Banach’s isometric subspace problem in dimension four

نویسندگان

چکیده

We prove that if all intersections of a convex body $B\subset \mathbb{R}^{4}$ with 3-dimensional linear subspaces are linearly equivalent then $B$ is centered ellipsoid. This gives an affirmative answer to the case $n=3$ following question by Banach from 1932: Is normed vector space $V$ whose $n$ -dimensional isometric, for fixed $2 \le n< \dim V$ , necessarily Euclidean? The dimensions and $\dim V=4$ first where was unresolved. Since 3-sphere parallelizable, known global topological methods do not help in this case. Our proof employs differential geometric approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

The Cancellation Problem in Dimension Four

This paper proves that the Cancellation Problem has an affirmative answer over a Dedekind containing the rational numbers in dimension three. As a consequence, the Cancellation Problem turns out to have an affirmative answer for a large class of locally nilpotent derivations in dimension four, including the triangular ones.

متن کامل

A completely entangled subspace of maximal dimension

Consider a tensor product H = H1⊗H2⊗· · ·⊗Hk of finite dimensional Hilbert spaces with dimension of Hi = di, 1 ≤ i ≤ k. Then the maximum dimension possible for a subspace of H with no non-zero product vector is known to be d1d2 . . . dk− (d1 +d2 + · · ·+dk)+k−1. We obtain an explicit example of a subspace of this kind. We determine the set of product vectors in its orthogonal complement and sho...

متن کامل

Estimation of the Effective Dimension Reduction Subspace

Yi = f(xi) + εi = g(Θ >xi) + εi, i = 1, . . . , n, is addressed. In the general setup we are interested in, the covariates xi ∈ R, Θ is a d×m orthogonal matrix (ΘΘ = Im∗) and g : R ∗ → R is an unknown function. To be able to estimate Π consistently, we assume that S = Im(Θ) is the smallest subspace satisfying f(xi) = f(ΠSxi), ∀i = 1, . . . , n, where ΠS stands for the orthogonal projector in R ...

متن کامل

The Invariant Subspace Problem

Notes for my lectures in the PSU Analysis Seminar during the winter and spring terms 2013-14, with special emphasis on the 1972 results of Victor Lomonosov.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 2023

ISSN: ['0020-9910', '1432-1297']

DOI: https://doi.org/10.1007/s00222-023-01197-2